Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38629735

RESUMO

While temozolomide (TMZ) has been a cornerstone in the treatment of newly diagnosed glioblastoma (GBM), a significant challenge has been the emergence of resistance to TMZ, which compromises its clinical benefits. Additionally, the nonspecificity of TMZ can lead to detrimental side effects. Although TMZ is capable of penetrating the blood-brain barrier (BBB), our research addresses the need for targeted therapy to circumvent resistance mechanisms and reduce off-target effects. This study introduces the use of PEGylated mesoporous silica nanoparticles (MSN) with octyl group modifications (C8-MSN) as a nanocarrier system for the delivery of docetaxel (DTX), providing a novel approach for treating TMZ-resistant GBM. Our findings reveal that C8-MSN is biocompatible in vitro, and DTX@C8-MSN shows no hemolytic activity at therapeutic concentrations, maintaining efficacy against GBM cells. Crucially, in vivo imaging demonstrates preferential accumulation of C8-MSN within the tumor region, suggesting enhanced permeability across the blood-brain tumor barrier (BBTB). When administered to orthotopic glioma mouse models, DTX@C8-MSN notably prolongs survival by over 50%, significantly reduces tumor volume, and decreases side effects compared to free DTX, indicating a targeted and effective approach to treatment. The apoptotic pathways activated by DTX@C8-MSN, evidenced by the increased levels of cleaved caspase-3 and PARP, point to a potent therapeutic mechanism. Collectively, the results advocate DTX@C8-MSN as a promising candidate for targeted therapy in TMZ-resistant GBM, optimizing drug delivery and bioavailability to overcome current therapeutic limitations.

2.
Cancer Lett ; 586: 216666, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38311053

RESUMO

Glioblastoma (GBM) is a highly aggressive and treatment-resistant brain tumor, necessitating novel therapeutic strategies. In this study, we present a mechanistic breakthrough by designing and evaluating a series of abiraterone-installed hydroxamic acids as potential dual inhibitors of CYP17A1 and HDAC6 for GBM treatment. We established the correlation of CYP17A1/HDAC6 overexpression with tumor recurrence and temozolomide resistance in GBM patients. Compound 12, a dual inhibitor, demonstrated significant anti-GBM activity in vitro, particularly against TMZ-resistant cell lines. Mechanistically, compound 12 induced apoptosis, suppressed recurrence-associated genes, induced oxidative stress and initiated DNA damage response. Furthermore, molecular modeling studies confirmed its potent inhibitory activity against CYP17A1 and HDAC6. In vivo studies revealed that compound 12 effectively suppressed tumor growth in xenograft and orthotopic mouse models without inducing significant adverse effects. These findings highlight the potential of dual CYP17A1 and HDAC6 inhibition as a promising strategy for overcoming treatment resistance in GBM and offer new hope for improved therapeutic outcomes.


Assuntos
Androstenos , Neoplasias Encefálicas , Glioblastoma , Esteroide 17-alfa-Hidroxilase , Animais , Humanos , Camundongos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Desacetilase 6 de Histona/genética , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Estresse Oxidativo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Med Chem ; 67(4): 2963-2985, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38285511

RESUMO

Structural analysis of tazemetostat, an FDA-approved EZH2 inhibitor, led us to pinpoint a suitable site for appendage with a pharmacophoric fragment of second-generation HSP90 inhibitors. Resultantly, a magnificent dual EZH2/HSP90 inhibitor was pinpointed that exerted striking cell growth inhibitory efficacy against TMZ-resistant Glioblastoma (GBM) cell lines. Exhaustive explorations of chemical probe 7 led to several revelations such as (i) compound 7 increased apoptosis/necrosis-related gene expression, whereas decreased M phase/kinetochore/spindle-related gene expression as well as CENPs protein expression in Pt3R cells; (ii) dual inhibitor 7 induced cell cycle arrest at the M phase; (iii) compound 7 suppressed reactive oxygen species (ROS) catabolism pathway, causing the death of TMZ-resistant GBM cells; and (iv) compound 7 elicited substantial in vivo anti-GBM efficacy in experimental mice xenografted with TMZ-resistant Pt3R cells. Collectively, the study results confirm the potential of dual EZH2-HSP90 inhibitor 7 as a tractable anti-GBM agent.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Temozolomida/farmacologia , Apoptose , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Glioblastoma/metabolismo , Inibidores Enzimáticos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico
4.
Life (Basel) ; 14(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38255754

RESUMO

A 50-year-old male presented to the emergency room after experiencing sudden right upper limb facial numbness and dysphasia, followed by full recovery. A brain CT scan showed hyperdense lesions within the left hemispheric sulcus, which raised suspicion of spontaneous subarachnoid hemorrhage. A T1-weighted MRI showed multiple tiny leptomeningeal enhancements in the same area, and a digital subtraction angiography showed no signs of vascular abnormality. Cerebrospinal fluid cytology revealed atypical melanin-containing cells with minimal pleomorphism. One month later, the patient developed sixth nerve palsy, which was determined to be due to intracranial hypertension. Multiple giant nevi on the legs, trunk, and scalp were also observed. A skin biopsy showed well-defined and symmetrical proliferation of melanocytic nevus cell nests in the dermis. An open biopsy was performed due to the suspicious leptomeningeal lesions, which surprisingly revealed diffuse and thick black-colored tissue infiltration of the leptomeninges. Pathology confirmed the diagnosis of meningeal melanocytosis. A ventriculoperitoneal shunt was then placed, and the patient's neurological symptoms gradually improved. Based on the presence of multiple giant nevi on the patient's skin and the finding of diffuse meningeal melanocytosis during the open biopsy, the patient was diagnosed with neurocutaneous melanosis. The patient received 6 cycles triweekly of Ipilimumab and Nivolumab 8 months after initial diagnosis. Unfortunately, the disease progressed and the patient passed away 14 months after initial diagnosis.

5.
Mitochondrion ; 75: 101836, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158149

RESUMO

Glioblastoma (GBM) is a highly aggressive and lethal brain tumor, with temozolomide (TMZ) being the standard chemotherapeutic agent for its treatment. However, TMZ resistance often develops, limiting its therapeutic efficacy and contributing to poor patient outcomes. Recent evidence highlights the crucial role of mitochondria in the development of TMZ resistance through various mechanisms, including alterations in reactive oxygen species (ROS) production, metabolic reprogramming, apoptosis regulation, biogenesis, dynamics, stress response, and mtDNA mutations. This review article aims to provide a comprehensive overview of the mitochondrial mechanisms involved in TMZ resistance and discuss potential therapeutic strategies targeting these mechanisms to overcome resistance in GBM. We explore the current state of clinical trials targeting mitochondria or related pathways in primary GBM or recurrent GBM, as well as the challenges and future perspectives in this field. Understanding the complex interplay between mitochondria and TMZ resistance will facilitate the development of more effective therapeutic strategies and ultimately improve the prognosis for GBM patients.


Assuntos
Glioblastoma , Humanos , Temozolomida/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Mitocôndrias/metabolismo
6.
Neurotrauma Rep ; 4(1): 751-760, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028275

RESUMO

Mild traumatic brain injury (mTBI) is a prevalent health concern with variable recovery trajectories, necessitating reliable prognostic markers. Insulin-like growth factor 1 (IGF-1) emerges as a potential candidate because of its role in cellular growth, repair, and neuroprotection. However, limited studies investigate IGF-1 as a prognostic marker in mTBI patients. This study aimed to explore the correlation of IGF-1 with cognitive functions assessed using the Wisconsin Card Sorting Test (WCST) in mTBI patients. We analyzed data from 295 mTBI and 200 healthy control participants, assessing demographic characteristics, injury causes, and IGF-1 levels. Cognitive functions were evaluated using the WCST. Correlation analyses and regression models were used to investigate the associations between IGF-1 levels, demographic factors, and WCST scores. Significant differences were observed between mTBI and control groups in the proportion of females and average education years. Falls and traffic accidents were identified as the primary causes of mTBI. The mTBI group demonstrated worse cognitive outcomes on the WCST, except for the "Learning to Learn" index. Correlation analyses revealed significant relationships between IGF-1 levels, demographic factors, and specific WCST scores. Regression models demonstrated that IGF-1, age, and education years significantly influenced various WCST scores, suggesting their roles as potential prognostic markers for cognitive outcomes in mTBI patients. We provide valuable insights into the potential correlation of IGF-1 with cognitive functions in mTBI patients, particularly in tasks requiring cognitive flexibility and problem solving.

7.
Lipids Health Dis ; 22(1): 114, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537607

RESUMO

Glioblastoma (GBM) is a highly aggressive and lethal brain tumor with limited treatment options, such as the chemotherapeutic agent, temozolomide (TMZ). However, many GBM tumors develop resistance to TMZ, which is a major obstacle to effective therapy. Recently, dysregulated lipid metabolism has emerged as an important factor contributing to TMZ resistance in GBM. The dysregulation of lipid metabolism is a hallmark of cancer and alterations in lipid metabolism have been linked to multiple aspects of tumor biology, including proliferation, migration, and resistance to therapy. In this review, we aimed to summarize current knowledge on lipid metabolism in TMZ-resistant GBM, including key metabolites and proteins involved in lipid synthesis, uptake, and utilization, and recent advances in the application of metabolomics to study lipid metabolism in GBM. We also discussed the potential of lipid metabolism as a target for novel therapeutic interventions. Finally, we highlighted the challenges and opportunities associated with developing these interventions for clinical use, and the need for further research to fully understand the role of lipid metabolism in TMZ resistance in GBM. Our review suggests that targeting dysregulated lipid metabolism may be a promising approach to overcome TMZ resistance and improve outcomes in patients with GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Metabolismo dos Lipídeos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Biochim Biophys Acta Rev Cancer ; 1878(5): 188957, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37488051

RESUMO

Eicosanoids are a family of bioactive lipids that play diverse roles in the normal physiology of the brain, including neuronal signaling, synaptic plasticity, and regulation of cerebral blood flow. In the brain, eicosanoids are primarily derived from arachidonic acid, which is released from membrane phospholipids in response to various stimuli. Prostaglandins (PGs) and leukotrienes (LTs) are the major classes of eicosanoids produced in the brain, and they act through specific receptors to modulate various physiological and pathological processes. Dysregulation of eicosanoids has been implicated in the development and progression of brain tumors, including glioblastoma (GBM), meningioma, and medulloblastoma. Eicosanoids have been shown to promote tumor cell proliferation, migration, invasion, angiogenesis, and resistance to therapy. Particularly, PGE2 promotes GBM cell survival and resistance to chemotherapy. Understanding the role of eicosanoids in brain tumors can inform the development of diagnostic and prognostic biomarkers, as well as therapeutic strategies that target eicosanoid pathways. Cyclooxygenase (COX)-2 and 5-lipoxygenase (LOX) inhibitors have been shown to reduce the growth and invasiveness of GBM cells. Moreover, eicosanoids have immunomodulatory effects that can impact the immune response to brain tumors. Understanding the role of eicosanoids in the immune response to brain tumors can inform the development of immunotherapy approaches for these tumors. Overall, the complex role of eicosanoids in the brain underscores the importance of further research to elucidate their functions in normal physiology and disease, and highlights the potential for developing novel therapeutic approaches that target eicosanoid pathways in brain tumors.


Assuntos
Neoplasias Encefálicas , Eicosanoides , Eicosanoides/metabolismo , Encéfalo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/terapia , Humanos , Animais , Transdução de Sinais , Dinoprostona/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/terapia
10.
Eur J Med Chem ; 256: 115459, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37172473

RESUMO

Monoamine oxidase A (MAO A) and heat shock protein 90 (HSP90) inhibitors have been shown to decrease the progression of glioblastoma (GBM) and other cancers. In this study, a series of MAO A/HSP90 dual inhibitors were designed and synthesized in the hope to develop more effective treatment of GBM. Compounds 4-b and 4-c are conjugates of isopropylresorcinol (pharmacophore of HSP90 inhibitor) with the phenyl group of clorgyline (MAO A inhibitor) by a tertiary amide bond substituted with methyl (4-b) or ethyl (4-c) group, respectively. They inhibited MAO A activity, HSP90 binding, and the growth of both TMZ-sensitive and -resistant GBM cells. Western blots showed that they increased HSP70 expression indicating reduced function of HSP90, reduced HER2 and phospho-Akt expression similar to MAO A or HSP90 inhibitor itself. Both compounds decreased IFN-γ induced PD-L1 expression in GL26 cells, suggesting they can act as immune checkpoint inhibitor. Further, they reduced tumor growth in GL26 mouse model. NCI-60 analysis showed they also inhibited the growth of colon cancer, leukemia, non-small cell lung and other cancers. Taken together, this study demonstrates MAO A/HSP90 dual inhibitors 4-b and 4-c reduced the growth of GBM and other cancers, and they have potential to inhibit tumor immune escape.


Assuntos
Antineoplásicos , Glioblastoma , Camundongos , Animais , Monoaminoxidase/metabolismo , Glioblastoma/tratamento farmacológico , Inibidores da Monoaminoxidase/farmacologia , Clorgilina/farmacologia , Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico HSP90
11.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499054

RESUMO

Myeloid zinc finger 1 (MZF1), also known as zinc finger protein 42, is a zinc finger transcription factor, belonging to the Krüppel-like family that has been implicated in several types of malignancies, including glioblastoma multiforme (GBM). MZF1 is reportedly an oncogenic gene that promotes tumor progression. Moreover, higher expression of MZF1 has been associated with a worse overall survival rate among patients with GBM. Thus, MZF1 may be a promising target for therapeutic interventions. Cantharidin (CTD) has been traditionally used in Chinese medicine to induce apoptosis and inhibit cancer cell proliferation; however, the mechanism by which CTD inhibits cell proliferation remains unclear. In this study, we found that the expression of MZF1 was higher in GBM tissues than in adjacent normal tissues and low-grade gliomas. Additionally, the patient-derived GBM cells and GBM cell lines presented higher levels of MZF1 than normal human astrocytes. We demonstrated that CTD had greater anti-proliferative effects on GBM than a derivative of CTD, norcantharidin (NCTD). MZF1 expression was strongly suppressed by CTD treatment. Furthermore, MZF1 enhanced the proliferation of GBM cells and upregulated the expression of c-MYC, whereas these effects were reversed by CTD treatment. The results of our study suggest that CTD may be a promising therapeutic agent for patients with GBM and suggest a promising direction for further investigation.


Assuntos
Glioblastoma , Fatores de Transcrição Kruppel-Like , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Linhagem Celular Tumoral , Regiões Promotoras Genéticas , Cantaridina/farmacologia , Proliferação de Células , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Regulação Neoplásica da Expressão Gênica
12.
Oxid Med Cell Longev ; 2022: 4081380, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035213

RESUMO

It has long been documented that cancer cells show increased and persistent oxidative stress due to increased reactive oxygen species (ROS), which is necessary for their increased proliferative rate. Due to the high levels of ROS, cancer cells also stimulate the antioxidant system, which includes the enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX), to eliminate ROS. However, overexpressed antioxidant enzymes often lead to drug resistance and therapeutic failure. Glioblastoma (GBM) is the most aggressive brain tumor and has the poorest prognosis. The transcription factor CCAAT/enhancer-binding protein delta (CEBPD) is highly expressed in GBM and correlates with drug resistance, prompting us to elucidate its role in GBM cell survival. In this study, we first demonstrated that loss of CEBPD significantly inhibited GBM cell viability and increased cell apoptosis. Furthermore, the expression of CAT was attenuated through promoter regulation following CEBPD knockdown, accelerating intracellular hydrogen peroxide (H2O2) accumulation. In addition, mitochondrial function was impaired in CEBPD knockdown cells. Together, we revealed the mechanism by which CEBPD-mediated CAT expression regulates H2O2 clearance for GBM cell survival.


Assuntos
Glioblastoma , Peróxido de Hidrogênio , Antioxidantes , Proteína delta de Ligação ao Facilitador CCAAT , Catalase , Humanos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Superóxido Dismutase
13.
Neurotherapeutics ; 19(2): 616-634, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35267171

RESUMO

Temozolomide (TMZ) monotherapy is known to be insufficient for resistant/relapsed glioblastoma (GBM), thus seeking a sensitization agent for TMZ is necessary. It was found that regorafenib may improve the overall survival of relapsed GBM patients. We aimed to discover whether regorafenib can enhance the anti-GBM effects of TMZ, and elucidate underlying mechanism. Our analysis of The Cancer Genome Atlas database revealed that the increased expression of CXCR4 is linked to poor survival of GBM patients. Additionally, TMZ treatment may trigger CXCR4/CXCL12 axis of GBM. We used two GBM cell lines, two primary GBM cells, and animal model to identify underlying mechanism and treatment efficacy of regorafenib combined with TMZ by cytotoxicity, apoptosis, reporter gene and invasion/migration assays, chemokine array, Western blotting, MRI, microarray, and immunohistochemistry. We observed that the chemokine CXCL-12 and its receptor CXCR4 regulate the resistance to TMZ, whereas the inhibition of CXCL-12/CXCR4 signaling sensitizes GBM cells to TMZ. The TMZ-induced CXCL-12/CXCR4 signaling, phosphor-extracellular signal-regulated kinases 1 and 2 (ERK1/2) and nuclear factor kappa light chain enhancer of activated B cells (NF-κB), and NF-κB-related proteins can effectively diminish when combining with regorafenib. Regorafenib significantly enhanced the TMZ-induced extrinsic/intrinsic apoptotic pathways, and facilitated the suppression of invasion and migration potential in GBM. Orthotopic tumor experiments demonstrated tumor size reduction and prolonged survival in combination group even with half-dose of TMZ. Our findings provide promising evidence that regorafenib may sensitize GBM to TMZ treatment through inhibition of the CXCL12/CXCR4/ERK/NF-κB signaling.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Compostos de Fenilureia , Piridinas , Animais , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Quimiocina CXCL12/farmacologia , Quimiocina CXCL12/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , NF-kappa B/metabolismo , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Receptores CXCR4/uso terapêutico , Temozolomida/farmacologia , Temozolomida/uso terapêutico
14.
J Biomed Sci ; 29(1): 21, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35337344

RESUMO

BACKGROUND: Sp1 is involved in the recurrence of glioblastoma (GBM) due to the acquirement of resistance to temozolomide (TMZ). Particularly, the role of Sp1 in metabolic reprogramming for drug resistance remains unknown. METHODS: RNA-Seq and mass spectrometry were used to analyze gene expression and metabolites amounts in paired GBM specimens (primary vs. recurrent) and in paired GBM cells (sensitive vs. resistant). ω-3/6 fatty acid and arachidonic acid (AA) metabolism in GBM patients were analyzed by targeted metabolome. Mitochondrial functions were determined by Seahorse XF Mito Stress Test, RNA-Seq, metabolome and substrate utilization for producing ATP. Therapeutic options targeting prostaglandin (PG) E2 in TMZ-resistant GBM were validated in vitro and in vivo. RESULTS: Among the metabolic pathways, Sp1 increased the prostaglandin-endoperoxide synthase 2 expression and PGE2 production in TMZ-resistant GBM. Mitochondrial genes and metabolites were obviously increased by PGE2, and these characteristics were required for developing resistance in GBM cells. For inducing TMZ resistance, PGE2 activated mitochondrial functions, including fatty acid ß-oxidation (FAO) and tricarboxylic acid (TCA) cycle progression, through PGE2 receptors, E-type prostanoid (EP)1 and EP3. Additionally, EP1 antagonist ONO-8713 inhibited the survival of TMZ-resistant GBM synergistically with TMZ. CONCLUSION: Sp1-regulated PGE2 production activates FAO and TCA cycle in mitochondria, through EP1 and EP3 receptors, resulting in TMZ resistance in GBM. These results will provide us a new strategy to attenuate drug resistance or to re-sensitize recurred GBM.


Assuntos
Glioblastoma , Apoptose/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Ácidos Graxos/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Mitocôndrias , Temozolomida/farmacologia
15.
J Steroid Biochem Mol Biol ; 219: 106067, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35114375

RESUMO

Allopregnanolone (allo) is a physiological regulator of neuronal activity that treats multiple neurological disorders. Allo penetrates the blood-brain barrier with very high efficiency, implying that allo can treat CNS-related diseases, including glioblastoma (GBM), which always recurs after standard therapy. Hence, this study aimed to determine whether allo has a therapeutic effect on GBM. We found that allo enhanced temozolomide (TMZ)-suppressed cell survival and proliferation of TMZ-resistant cells. In particular, allo enhanced TMZ-inhibited cell migration and TMZ-induced apoptosis. Additionally, allo strongly induced DNA damage characterized by γH2Ax. Furthermore, quantitative proteomic analysis, iTRAQ, showed that allo significantly decreased the levels of DPYSL3, S100A11, and S100A4, reflecting the poor prognosis of patients with GBM confirmed by differential gene expression and survival analysis. Moreover, single-cell RNA-Seq revealed that S100A11, expressed in malignant cells, oligodendrocytes, and macrophages, was significantly associated with immune cell infiltration. Furthermore, overexpression of DPYSL3 or S100A11 prevented allo-induced cell death. In conclusion, allo suppresses GBM cell survival by decreasing DPYSL3/S100A11 expression and inducing DNA damage.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Proteínas Musculares , Pregnanolona , Proteínas S100 , Antineoplásicos Alquilantes , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/biossíntese , Recidiva Local de Neoplasia , Pregnanolona/farmacologia , Proteômica , Proteínas S100/antagonistas & inibidores , Proteínas S100/biossíntese , Temozolomida/farmacologia
16.
J Exp Clin Cancer Res ; 41(1): 47, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109908

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most aggressive and lethal brain tumor. Although the histone deacetylase (HDAC)/transcription factor axis promotes growth in GBM, whether HDACs including HDAC6 are involved in modulating long non-coding RNAs (lncRNAs) to affect GBM malignancy remains obscure. METHODS: Integrative analysis of microarray and RNA-seq was performed to identify lncRNAs governed by HDAC6. Half-life measurement and RNA-protein pull-down assay combined with isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis were conducted to identify RNA modulators. The effect of LINC00461 on GBM malignancy was evaluated using animal models and cell proliferation-related assays. Functional analysis of the LINC00461 downstream networks was performed comprehensively using ingenuity pathway analysis and public databases. RESULTS: We identified a lncRNA, LINC00461, which was substantially increased in stem-like/treatment-resistant GBM cells. LINC00461 was inversely correlated with the survival of mice-bearing GBM and it was stabilized by the interaction between HDAC6 and RNA-binding proteins (RBPs) such as carbon catabolite repression-negative on TATA-less (CCR4-NOT) core exoribonuclease subunit 6 and fused in sarcoma. Targeting LINC00461 using azaindolylsulfonamide, an HDAC6 inhibitor, decreased cell-division-related proteins via the lncRNA-microRNA (miRNA)-mRNA networks and caused cell-cycle arrest, thereby suppressing proliferation in parental and drug-resistant GBM cells and prolonging the survival of mice-bearing GBM. CONCLUSIONS: This study sheds light on the role of LINC00461 in GBM malignancy and provides a novel therapeutic strategy for targeting the HDAC6/RBP/LINC00461 axis and its downstream effectors in patients with GBM.


Assuntos
Neoplasias Encefálicas/genética , Glioblastoma/genética , Desacetilase 6 de Histona/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Transfecção
17.
Neurosci Res ; 176: 31-39, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34687812

RESUMO

During the neural circuit formation, neuronal growth cones must be guided precisely to their neuronal or muscle targets, which can be achieved by the activation of membrane-bound guidance receptors at the periphery. However, the mechanisms that regulate the temporal availability of these receptors remain largely unknown. TAR DNA binding protein-43 (TDP-43) has been proposed to bind with the mRNAs of guidance receptors, thus prompting us to investigate its role in axon guidance of the spinal lateral motor column (LMC) neurons into the limb mesenchyme. We first identified the TDP-43 expression in the LMC neurons at the stage of axons growth into the limb using in situ mRNA hybridization. The loss and gain of TDP-43 function in chick LMC neurons redirected their axon trajectory with opposite effects. In mice, a spinal motor neuron-specific TDP-43 deletion led to the misrouting of LMC axons. Further, ectopic TDP-43 expression increased EphB protein levels in LMC neurons, suggesting that TDP-43 mediates LMC pathfinding by regulating EphB expression. Finally, TDP-43 levels influenced the growth preference of LMC neurites against ephrin-B, but not Netrin-1 and Semaphorin ligands. Our results demonstrate that TDP-43 is essential for the ephrinB:EphB signaling-mediated axon trajectory selection of LMC subtypes into the limb.


Assuntos
Axônios , Proteínas de Ligação a DNA , Receptores da Família Eph , Animais , Axônios/metabolismo , Proteínas de Ligação a DNA/metabolismo , Efrinas/genética , Efrinas/metabolismo , Camundongos , Neurônios Motores/metabolismo , Receptores da Família Eph/metabolismo , Medula Espinal/metabolismo
18.
Dev Dyn ; 251(3): 444-458, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34374463

RESUMO

BACKGROUND: Proper guidance of neuronal axons to their targets is required to assemble neural circuits during the development of the nervous system. However, the mechanism by which the guidance of axonal growth cones is regulated by specific intermediaries activated by receptor signaling pathways to mediate cytoskeleton dynamics is unclear. Vav protein members have been proposed to mediate this process, prompting us to investigate their role in the limb selection of the axon trajectory of spinal lateral motor column (LMC) neurons. RESULTS: We found Vav2 and Vav3 expression in LMC neurons when motor axons grew into the limb. Vav2, but not Vav3, loss-of-function perturbed LMC pathfinding, while Vav2 gain-of-function exhibited the opposite effects, demonstrating that Vav2 plays an important role in motor axon growth. Vav2 knockdown also attenuated the redirectional phenotype of LMC axons induced by Dcc, but not EphA4, in vivo and lateral LMC neurite growth preference to Netrin-1 in vitro. This study showed that Vav2 knockdown and ectopic nonphosphorylable Vav2 mutant expression abolished the Src-induced stronger growth preference of lateral LMC neurites to Netrin-1, suggesting that Vav2 is downstream of Src in this context. CONCLUSIONS: Vav2 is essential for Netrin-1-regulated LMC motor axon pathfinding through Src interaction.


Assuntos
Orientação de Axônios , Cones de Crescimento , Netrina-1 , Proteínas Proto-Oncogênicas c-vav , Animais , Orientação de Axônios/fisiologia , Axônios/fisiologia , Cones de Crescimento/fisiologia , Neurônios Motores/fisiologia , Netrina-1/fisiologia , Proteínas Proto-Oncogênicas c-vav/fisiologia
20.
Cell Death Dis ; 12(10): 884, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584069

RESUMO

DNA repair promotes the progression and recurrence of glioblastoma (GBM). However, there remain no effective therapies for targeting the DNA damage response and repair (DDR) pathway in the clinical setting. Thus, we aimed to conduct a comprehensive analysis of DDR genes in GBM specimens to understand the molecular mechanisms underlying treatment resistance. Herein, transcriptomic analysis of 177 well-defined DDR genes was performed with normal and GBM specimens (n = 137) from The Cancer Genome Atlas and further integrated with the expression profiling of histone deacetylase 6 (HDAC6) inhibition in temozolomide (TMZ)-resistant GBM cells and patient-derived tumor cells. The effects of HDAC6 inhibition on DDR signaling were examined both in vitro and intracranial mouse models. We found that the expression of DDR genes, involved in repair pathways for DNA double-strand breaks, was upregulated in highly malignant primary and recurrent brain tumors, and their expression was related to abnormal clinical features. However, a potent HDAC6 inhibitor, MPT0B291, attenuated the expression of these genes, including RAD51 and CHEK1, and was more effective in blocking homologous recombination repair in GBM cells. Interestingly, it resulted in lower cytotoxicity in primary glial cells than other HDAC6 inhibitors. MPT0B291 reduced the growth of both TMZ-sensitive and TMZ-resistant tumor cells and prolonged survival in mouse models of GBM. We verified that HDAC6 regulated DDR genes by affecting Sp1 expression, which abolished MPT0B291-induced DNA damage. Our findings uncover a regulatory network among HDAC6, Sp1, and DDR genes for drug resistance and survival of GBM cells. Furthermore, MPT0B291 may serve as a potential lead compound for GBM therapy.


Assuntos
Dano ao DNA , Glioblastoma/enzimologia , Glioblastoma/patologia , Desacetilase 6 de Histona/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Dano ao DNA/genética , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Desacetilase 6 de Histona/antagonistas & inibidores , Humanos , Indóis , Masculino , Camundongos Endogâmicos NOD , Proteínas de Neoplasias/metabolismo , Neuroglia/metabolismo , Piridinas , Temozolomida/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...